International Journal of Engineering Science Invention
ISSN (Online): 2319 — 6734, ISSN (Print): 2319 — 6726
www.ijesi.org Volume 2 Issue 8 | August. 2013 | PP.60-68

Design and Implementation of Advanced Modified Booth
Encoding Multiplier

Shaik.Kalisha Baba', D.Rajaramesh?
1,2, (ECE, Mvgr College Of Engineering, India)

ABSTRACT:- This paper presents the design and implementation of Advanced Modified Booth Encoding
(AMBE) multiplier for both signed and unsigned 32 - bit numbers multiplication. The already existed Modified
Booth Encoding multiplier and the Baugh-Wooley multiplier perform multiplication operation on signed
numbers only. Where as the array multiplier and Braun array multipliers perform multiplication operation on
unsigned numbers only. Thus, the requirement of the modern computer system is a dedicated and very high
speed unique multiplier unit for signed and unsigned numbers. Therefore, this paper presents the design and
implementation of AMBE multiplier. The modified Booth Encoder circuit generates half the partial products in
parallel. By extending sign bit of the operands and generating an additional partial product the AMBE
multiplier is obtained. The Carry Save Adder (CSA) tree and the final Carry Look ahead (CLA) adder used to
speed up the multiplier operation. Since signed and unsigned multiplication operation is performed by the same
multiplier unit the required hardware and the chip area reduces and this in turn reduces power dissipation and
cost of a system.

KEY WORDS: Modified Booth Encoding multiplier, CSA,CLA, Signed-unsigned.

l. INTRODUCTION

Multiplication is a most commonly used operation in many computing systems. Infact multiplication is
nothing but addition since, multiplicand adds to itself multiplier no.of times gives the multiplication value
between multiplier and multiplicand. But considering the fact that this kind of implementation really takes huge
hardware resources and the circuit operates at utterly low speed. In order to address this so many ideas have
been presented so far for the last three decades. Each one is aimed at particular improvement according to the
requirement. One may be aimed at high clock speeds and another mayb e aimed for low power or less area
occupation. Either way ultimate job is to come up with an efficient architecture which can address three
constraints of VLSI speed, area, and power. Among these three speed is the one which requires special attention.
If we observe closely multiplication operation involves two steps one is producing partial products and adding
these partial products [3]. Thus, the speed of a multiplier hardly depends on how fast generate the partial
products and how fast we can add them together. If the number of partial products to be generated are of less
then it is indirectly means that we have achieved the speed in generating partial products. Booth’s algorithms are
meant for this only. To speed up the addition among the partial products we need fast adder architectures.
Since the multipliers have a significant impact on the performance of the entire system, many high performance
algorithms and architectures have been proposed [1-12]. The very high speed and dedicated multipliers are used
in pipeline and vector computers.

The high speed Booth multipliers and pipelined Booth multipliers are used for digital signal processing
(DSP) applications such as for multimedia and communication systems. High speed DSP computation
applications such as Fast Fourier transform (FFT) require additions and multiplications. The conventional
modified Booth encoding (MBE) generates an irregular partial product array because of the extra partial product
bit at the least significant bit position of each partial product row. Therefore papers [4] presents a simple
approach to generate a regular partial product array with fewer partial product rows and negligible overhead,
there by lowering the complexity of partial product reduction and reducing the area, delay, and power of MBE
multipliers. But the drawback of this multiplier is that it function only for signed number operands.

The modified-Booth algorithm is extensively used for high-speed multiplier circuits. Once, when array
multipliers were used, the reduced number of generated partial products significantly improved multiplier
performance. In designs based on reduction trees with logarithmic logic depth, however, the reduced number of
partial products has a limited impact on overall performance. The Baugh-Wooley algorithm [7,8,9] is a different
scheme for signed multiplication, but is not so widely adopted because it may be complicated to deploy on

Www.ijesi.org 60 | Page

Design And Implementation Of...

irregular reduction trees. Again the Baugh-Wooley algorithm is for only signed number multiplication. The
array multipliers and Braun array multipliers [10] operates only on the unsigned numbers. Thus, the requirement
of the modern computer system is a dedicated and very high speed multiplier unit that can perform
multiplication operation on signed as well as unsigned numbers. In this paper we designed and implemented a
dedicated multiplier unit that can perform multiplication operation on both signed and unsigned numbers, and
this multiplier is called as AMBE multiplier.

I1. CONVENTIONAL MODIFIED BOOTH MULTIPLIER
2.1. Algorithm of the Modified Booth Multiplier :-

Multiplication consists of three steps: 1) the first step to generate the partial products; 2) the second
step to add the generated partial products until the last two rows are remained; 3) the third step to compute the
final multiplication results by adding the last two rows. The modified Booth algorithm reduces the number of
partial products by half in the first step. We used the modified Booth encoding (MBE) scheme proposed in [2].
It is known as the most efficient Booth encoding and decoding scheme. To multiply X by Y using the modified
Booth algorithm starts from grouping Y by three bits and encoding into one of {-2, -1, 0, 1, 2}. Table I shows
the rules to generate the encoded signals by MBE scheme and Fig. 1 (a) shows the corresponding logic diagram.
The Booth decoder generates the partial products using the encoded signals as shown in Fig. 1(b).

Table 1: TRUTH TABLE OF MBE SCHEME.

Biar b b value XI a A2 b Z Neg
] 0 o 0 1 0 1 0
]] 1 1 0 1 1 0
] 1 0 1 0 1 0 0
] 1 1 2 1 0 0 0
1 0 o -2 1 0 0 |
1 0 1 -1 0 | 0 |
1 1 0 -1 0 | 1 |
1 1 1 0 1 0 1 1

Neg

Fig. 1. The Encoder and Decoder for the new MBE scheme.
(a) Simple encoder (b) Decoder.
The new MBE recorder [2] was designed according to the following analysis. Table (1) presents the
truth table of the new encoding scheme. The Z signal makes the output zero to compensate the incorrect X2_b
and Neg signals. Fig. 1 presents the circuit diagram of the encoder and decoder. The encoder generates X1 _b,

Www.ijesi.org 61 | Page

Design And Implementation Of...

X2_b, and Z signals by encoding the three x-signals. The y LSB signal is the LSB of the y signal and is
combined with x-signals to determine the Row_LSB and the Neg_cin signals. Similarly, yMSB is combined
with x- signals to determine the sign extension signals.

Bitposition 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AANANOOOOO0OC @

AAQOOOOOCO® X
AANCOOQOOOOCCE® X

X
(@)
Bit position 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AANNOOCOOOO®
AAOQOQOQOOO®X
ANANCOOCOOOO®X
ACOQCOOOO@X
X
(b)
O : Normal ppt term /\ : Sign extension term
@ :Row_LSB term > : Neg_cin term

Fig. 2. 8x 8 MBE partial product array. (a) Traditional MBE partialproduct
array. (b) New MBE partial product array.

The Fig. 2(a) has widely been adopted in parallel multipliers since it can reduce the number of partial
product rows to be added by half, thus reducing the size and enhancing the speed of the reduction tree.
However, as shown in Fig. 1(a), the conventional MBE algorithm generates n/2 + 1 partial product rows rather
than n/2 due to the extra partial product bit (neg bit) at the least significant bit position of each partial product
row for negative encoding, leading to an irregular partial product array and a complex reduction tree. Therefore,
the Modified Booth multipliers with a regular partial product array [4] produce a very regular partial product
array, as shown in Fig. 3. Not only each negi is shifted left and replaced by ci but also the last neg bit is
removed. This approach reduces the partial product rows from n/2 + 1 to n/2 by incorporating the last neg bit
into the sign extension bits of the first partial product row, and almost no overhead is introduced to the partial
product generator. More regular partial product array and fewer partial product rows result in a small and fast
reduction tree, so that the area, delay, and power of MBE multipliers can further be reduced.

X7 Xe Xs X¢ Xz Xo X Xo
X Yz Ys Ys Ya Y3 Yo Yi Yo
PPgo PPgo PPgo PP7o PPso PPsg PPag PP3o PP2g PP1o PPgo
1 PPgy PP71 PPg1 PPs; PP4t PP31 PP2y PPy PPgq Negg
1 PPs2 PP72 PPg2 PPs2 PPz PP32 PP22 PPi2 PPgo Negy
1 PPg3 PP73 PPg3 PPs3 PP43 PP33 PP2s PP13 PPos Neg»
Negs
Fig. 3 Generated partial products and sign extension scheme

Fig. 3 shows the generated partial products and sign extension scheme of the 8-bit modified
Booth multiplier. The partial products generated by the modified Booth algorithm are added in parallel using
the Wallace tree until the last two rows are remained. The final multiplication results are generated by
adding the last two rows. The carry propagation adder is usually used in this step.

2.2. Architecture of the Modified Booth Multiplier :-

Fig. 4 shows the architecture of the commonly used modified Booth multiplier. The inputs of the
multiplier are multiplicand X and multiplier Y. The Booth encoder encodes input Y and derives the
encoded signals as shown in Fig. 1 (a). The Booth decoder generates the partial products according to the
logic diagram in Fig. 1 (b) using the encoded signals and the other input X. The Wallace tree computes the
last two rows by adding the generated partial products. The last two rows are added to generate the final
multiplication results using the carry look-ahead adder (CLA).

Www.ijesi.org 62 | Page

Design And Implementation Of...

Mulliplcand X Mulliplier ¥
|
] eresaesd L]
IE':'?llh_ Baaih gigrals Eooth
sganihm decodar encodes

partial
(e era 1] = 51

‘Wallace traa

carry l 1 sum

CLA

1"||:.|I (= =i

Fig. 4 Architecture of the modified Booth multiplier.

I11. PROPOSED AMBE MULTIPLIER
The main goal of this paper is to design and implement 32x32 multiplier for signed and unsigned
numbers using MBE technique. Table 2 shows the truth table of MBE scheme. From table 2 the MBE logic
diagram is implemented as shown in Fig. 5. Using the MBE logic and considering other conditions the Boolean
expression for one bit partial product generator is given by the equation 1.

Table 2: Truth Table of MBE Scheme.

by by by value X1 _a X2 a Z Neg
0 0 0 0 1 0 1 0
0 0 1 1 0 1 1 0
0 10 1 0 1 0 0
0 1 1 2 1 0 0 0
1 0 0 -2 1 0 0 1
1 0 1 1 0 1 0 1
1 10 1 0 1 1 1
1 1 1 0 1 0 1 0

.Iilj‘]' .Iilj‘r' i b]’ lIiI.-"r'+.|' bj' b]'—.l'

XI_a z AZ b

Fig. 5. Logic diagram of MBE.

pij = (ai@Dbi+1+bi-1Dbi) (ai-LDbi+1+bidbi+1+ bi-1Bbi) (1)

Www.ijesi.org 63 | Page

Design And Implementation Of...

Equation(1) is implemented as shown in Fig. 6. The SUMBE multiplier does not separately consider
the encoder and the decoder logic, but instead implemented as a single unit called partial product generator as
shown in Fig. 6. The negative partial products are converted into 2’s complement by adding a negate (Ni) bit.
An expression for negate bit is given by the Boolean equation 2. This equation is implemented as shown in Fig.
7. The required signed extension to convert 2’s complement signed multiplier into both signed-unsigned
multiplier is given by the equations 3and 4. For Boolean equations 5 and 6 the corresponding logic diagram is
shown in Fig. 8.

Ni = bi+1(bi-1bi) —(2)
a8 = s ua’ --=(3)
b8 = s ub7 —-(4)

a; buy bu b daiy by by by by by

]
v

ii

Fig. 6. Logic diagram of 1-bit partial product generator

by — |
hi }
N;

hf-.’

Fig. 7. Logic diagram of negate bit generater.

Fig.8. Logic Diagram of Sign Converter

The working principle of sign extension that converts signed multiplier signed-unsigned multiplier as
follows. One bit control signal called signed-unsigned (s_u) bit is used to indicate whether the multiplication
operation is signed number or unsigned number. When Sign-unsign s_u) = 0, it indicates unsigned number
multiplication, and when s_u = 1, it indicates signed number multiplication. It is required that when the
operation is unsigned multiplication the sign extended bit of both multiplicand and multiplier should be
extended with 0, that is a32= a33= b32=b33= 0. It is required that when the operation is signed multiplication
the sign extended bit depends on whether the multiplicand is negative or the multiplier is negative or both the

operands are negative. For this when the multiplicand operand is negative and multiplier operand is positive
the sign extended bits should be generated are s_u = 1, a31=1,b31= 0, a32=a33 =1, and b32= b33=0. And

Www.ijesi.org 64 | Page

Design And Implementation Of...

when the multiplicand operand is positive and multiplier operand is negative the sign extended bits should be
generated are s_u =1, a31=0, ,b31= 1, a32=a33 =0, and b32= b33=1. Table 3 shows the SUMBE multiplier

operation.
Table 3: SUMBE operation

Sign-unsign Type of operation

0 Unsigned multiplication

Signed multipheation

Fig. 10. shows the partial products generated by partaial product generater circuit which is shown in Fig. 6.
There are 17-partial products with sign extension and negate bit Ni. All the 17-partial products are generated in
parallel.

[ﬁ.ﬁ ﬂ_l: y dj ﬁ_‘) ﬂ; iy

b; bs bs by b; by by by

,!'_J'uxpn.# Pos Por Pos Pas Pos Pos Poz Por Poo X1
1 EMPHPMPUPMPM PizPuiPro Ny X2

1 E."H,’P':‘? Paefrzs Prafraz PP Poo Ny X3
I pssPsiPsaDss P3aP3sP32P31Pso N, X4
PyDssPasPasPazPa2PaiPao N; X5
PisPuaPrsPi2PrPioPe Ps Pr P Ps Pa Pz P2 PirPo
Fig. 9. 8x8 multiplier for signed-unsigned number.
a3l a30--—-—-—— a8 a7 a6 a5 ad a3 a2 al a0
b31 b30--—-—-- b8 b7 b6 bS5 b4 b3 b2 bl b0
p032p032p032p031p030----—---p07p06 pO5 pG4 pO3 p0l2 p01 pGG x1
I pl32pl131pl30pl129 ——-— pl7pl6 pl5 pl4pl3 pl2 pll plO NO x2
I P1532 P1531P1530 —mrememe P155P154P153P152P151P150 NI4 x16
P1631P1630P1629-——--——-P164P163P162P161P160 NI5 x17
) AT 1) A— P15P14P13P12P11P10P9PSPTP6PSPAP3P2P1 PO

Fig:10.32X32 multiplier for signed-unsigned number
In Fig. 10 there are 17-partial products namely X1, X2, X3, X4,

X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16 and X17. These partial products are added by the Carry
Save Adders (CSA) and the final stage is Carry Look ahead (CLA) adder as shown in Fig. 11. Each CSA adder
takes three inputs and produce sum and carry in parallel. There are three CSAs, five partial products are added
by the CSA tree and finally when there are only two outputs left out then finally CLA adder is used to produce
the final result. Assuming each gate delay an unit delay, including partial product generator circuit delay, then
the total through the CSA and CLA is 15+16 = 31 Unit delay. Thus with present Very Large Scale Integration
(VLSI) the total delay is estimated around 0.7 nanosecond and the multiplier operates at giga hertz frequency.

Www.ijesi.org 65 | Page

Design And Implementation Of...

X3 X2 X1

P=AxB

Fig. 11. Partial product adder logic.

IV. SIMULATION RESULTS
Verilog code is written to generate the required hardware and to produce the partial product, for CSA
adder, and CLA adder. After the successful compilation the RTL view generated is shown in Fig.12

— A(31:0)

p(63:0)}——
——1B(31:0)

—s U

Fig. 12: RTL view of 32x32 signunsigned multiplier

Fig. 13 shows the simulation result of signed-unsigned numbers Fig. 13(a) and Fig. 13(b) shows the simulation
result of signed- unsigned number in binary and decimal respectively. When s_u = 1, the 32-bit operands are
signed and the product of 11111111111111111111111111110001(-
15)x111111111111111211111111111110001(-15)=
0011100001(225). And when the control
signal s_u = 0, the 32-bit operands are unsigned and the product of
11111111111111111111111111110001(4294967281)x11111111111111111111111111110001(4294967281)=1
1111111111111111111111111112000100000000000000000000000011100001(18446744009285042401).

Fig. 13(c) and Fig. 13(d) shows the simulation result of signed- unsigned number in binary and decimal
respectively. When s u = 1, the 32-bit operands are signed and the product of
111111111111111100011111121121111 (-57345) x111111111111111112111111121111111 -1 =
001110000000000001 (57345). And when the control
signal su = 0, the 32-bit operands are unsigned and the product of
11111111111111110001111111111111(4294909951)x000011111111111112111111111111111
(268435455)=0000111111111111111100011111111011110000000000001110000000000001(11529061068807
12705).

Www.ijesi.org 66 | Page

Design And Implementation Of...

j Float {0.61xd) - [Defaultwcig*]

jF\Ie Edit View Simulation Window Layout Help

A IR T EX®|0 o TETIE AR ALBAIR e b [0 b E L=

J Redaunch

oo |
——— FTEETE [VEEVTEE FEFRERVERLY ————

_
I I I i 1T Fi1 mmmummu

@

j Float (O.61xd) - [Defaultwcfg®]
jFiIe Edit View Simulation Window Layout Help

® o

3 M b[E1:0]

j Float (0.61+d) - [Defaultwefg*]
jFiIe Edit View Simultion Window Layout Help

D “’H ; BEX® vo|Ma RENRARALPBA At %u 1| @2 1.UDus|]‘¢§

i D |
____l TG A ——-
_

IR T —l——mm T ||

j Float (0.61xd) - [Default.wcfg®]
jFi\e Edit View Simulation Window Layout Help

Fig. 13: Simulation results

Www.ijesi.org 67 | Page

Design And Implementation Of...

V. CONCLUSION
In this paper, we present a 32-bitx32-bit advanced multiplier capable of carrying out both signed and

unsigned operations. The proposed novel unified signed/unsigned multiplier was optimized in terms of speed,
power consumption and silicon area by exploiting more regular partial product array, developing more efficient
compression methods and combining several types of fast adders

[1]
[2]
(3]
[4]
[5]
(6]
[’
(8]
[9]
[10]
[11]
[12]

[13]

REFERENCES
W. —C. Yeh and C. —-W. Jen, “High Speed Booth encoded Parallel Multiplier Design,” IEEE transactions on computers, vol. 49,
no. 7, pp. 692-701, July 2000.
Shiann-Rong Kuang, Jiun-Ping Wang, and Cang-Yuan Guo, “Modified Booth multipliers with a Regular Partial Product Array,”
IEEE Transactions on circuits and systems-11, vol 56, No 5, May 2009.
Li-Rong Wang, Shyh-Jye Jou and Chung-Len Lee, “A well-tructured Modified Booth Multiplier Design” 978-1-4244-1617-
2/08/$25.00 ©2008 IEEE.
Soojin Kim and Kyeongsoon Cho “Design of High-speed Modified Booth Multipliers Operating at GHz Ranges” World
Academy of Science, Engineering and Technology 61 2010.
Magnus Sjalander and Per Larson-Edefors. “The Case for HPM-Based Baugh-Wooley Multipliers,” Chalmers University of
Technology, Sweden, March 2008
J. Fadavi-Ardekani, ®MxN Booth Encoded Multiplier Generator Using Optimized Wallace Trees,® IEEE Trans. VLSI Systems,
vol. 1,no. 2, June 1993.
Wang, G., “A unified unsigned/signed binary multiplier”, TheThirty-Eighth Asilomar Conference on Signals, Systems
andComputers, 2004, Vol. 1, pp.:513 - 516, Nov 7-10, 2004.
Kim J. Y., “Multiplier to selectively perform unsigned magnitude multiplication or signed magnitude multiplication”,USpatent
5,870,322, Feb 9, 1999.
Hwang-Cherng Chow and 1-Chyn Wey, “A 3.3V 1GHz high speed pipelined Booth multiplier,” Proc. of IEEE ISCAS, vol.
1, pp. 457-460, May 2002.
M. Aguirre-Hernandez and M. Linarse-Aranda, “Energy-efficient high-speed CMOS pipelined multiplier,” Proc. of IEEE
CCE, pp. 460-464, Nov. 2008.
A. D. Booth, “A signed binary multiplication technique,” Quarterly J. Mechanical and Applied Math, vol. 4, pp.236-240,
1951.
Kuang S. R., Wang J. P., Guo C. Y., “Modified Booth Multipliers With a Regular Partial Product Array” , JEEETransactions on
Circuits and Systems I1: Express Briefs,\Vol.56, Issue 5, pp.:404 - 408, May, 2009.
Jung-Yup Kang and Jean-Luc Gaudiot, “A simple high-speed multiplier design,” IEEE Trans. on Computers, vol. 55, issue
10, Oct. pp. 1253-1258, 2006.

Www.ijesi.org 68 | Page

